CAPE-OPEN for .Net Class Library

The Cape-Open for .Net class library is a collection of classes that implement the Cape-Open
v.1.0 interfaces in the .Net framework. This is a tool to aid process modeling component (PMC)
developers in producing CAPE-OPEN compliant objects using the latest version of the Visual
Studio integrated development environment.

The installation package will install the class library assembly on your computer, register it with
Visual Studio, and install a class documentation help file that can be access from the Start menu
(click the “Start” button, select “All Programs,” select the “CapeOpen.Net” folder and run the
“Documentation.chm” file.). The documentation file current contains class documentation. It will
be expanded to include a tutorial, which is presented below.

This class library is being distributed for testing and evaluation purposes only. If you have any
comment, please contact Bill Barrett at barrett.williamm@epa.gov.

Disclaimer of Liability:

With respect to the Cape-Open.Net software and documentation, neither the United States
Government nor any of their employees, assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed. Furthermore, software and documentation are supplied "as-is" without guarantee or
warranty, expressed or implied, including without limitation, any warranty of merchantability or
fitness for a specific purpose.

Disclaimer of Endorsement:

Reference herein to any specific commercial products, process, or service by trade name,
trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United Sates Government. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States
Government, and shall not be used for advertising or product endorsement purposes.

Copyright Status:
The U.S. Government retains a non-exclusive, royalty-free license to publish or reproduce the

documents and software provided. The software and documentation may be freely distributed
and may be used for testing and evaluation purposes.

mailto:barrett.williamm@epa.gov

Creation of a Mixer class in C-Sharp

This example will demonstrate the use the Cape-Open.Net class library to create a Mixer unit
operation using the C-Sharp language in Visual Studio.

Step 1: Create the Project. This is a standard process in Visual Studio. From the file menu, you
select “New->Project...:” and complete the “New Project” dialog as shown below. Click the
“OK?” button to create the project.

Project types: Templates: E|
= Wisual C++ ~ E! VYisual Studio installed templates
ATL
CLR E Windows Application {FlClass Library
General @Wmdows Cantrol Library 3CDHSD|E Application
MFC ECrystal Reports Application EDavice Application
Smart Device (5B ASP.NET Wb Application 48, A5P KET Web Service Application
Win3z
=) Other Languages My Templates
[Wisual Basic
= wisual C# | 5earch Onling Templates. .,
Windows
[#- Smart Device
Diatabase e
Starter Kits
Web
(ESTCNE S ||
A project For creating a C# class library ¢.dll) |

Marme: | MixerExample |
Location: | CAMixerExample | [Browse, .,]
Solution Mame: | MixerExample | Create directory For solution

[[Jadd to Source Control

Step 2: Add a reference to the Cape-Open.Net class library to the project. This can be initiated

by either clicking the “Project->Add Reference...” menu item or right clicking the “References”
item in the Solution Explorer and selecting “Add Reference...” from the context menu. This will
bring up the “Add References” dialog. Select CapeOpen from the list and click the “OK” button.

Add Reference @E

MET : oM | Projects || Browse | Recerkt

! Component Mame Wersion Runtime Pits
Accessibility 2.0.0.0 v2,0,50727 C
adodb 7.0,3300.0 wi.l.4322 C
AspMetMMCE:E 2.0, 0.50727 C

1.0 0.5 C
CppCodeProvider §.0.0. ,0; 7
CrystalDecisions. CrystalReports. Engine 10.2.360.., w2.0.50727 C
CrystalDecisions. RepartSource 10.2.360... +2.0.50727 C
CrystalDecisions, Shared 10,2360, +2,0.50727 C
CrystalDecisions. Web 10.2.360... +2.0.80727
CrystalDecisions, Windows Forms 10,2,360,,, +2,0,50727 C
cscomprgd 8.0.0.0 v2,0,50727 C
CustomMarshalers 2.0.0.0 v2,0.50727 C
EnvDTE §.0.0.0 v1.0.3705 C
envdte 8.0.0.0 v1.0.3705 C
Fre[iTFAN f.0.n.n w1 .NATNS o
L3 i 3 |

K H Cancel]

Step 3: The unit operation needs to derive from the CapeOpen.CUnitBase base class and needs
to be marked with the Serializable attribute. The base class implements all required Cape-Open
interfaces for a unit operations except the ICapeUnit.Calculate() method, which will be
implemented below. The Serializable attribute allows the unit to use .Net-based serialization for
persistence (saving to disk). The ComVisible(true) and the GUID attributes are added for
registering the class for COM interop.

Please note, the GUID for each class is a unique identifier. You will need to create a new GUID
using the CreateGUID tool in Visual Studio, as shown below:

Create GUID

Choosze the deszired format belov, then zelect "Copy'’ to
copy the resultz to the chpboard [the resultz can then be =

pasted into pour zource code). Chooze "Eit'" when New GUID

done. -
GUID Farmat
()1, IMPLEMENT_OLECREATEL.]

() 2 DEFINE_GUIDY...)

() 3. static const stuct GUID ={ ... }

()4, Registry Format (e, e | w1

Fezult
{8F39966E -6F94-4657-A670-DAD 971 CE30E 4}

Click the “Copy” button to copy the GUID in registry format, replace the GUID in the GUID
attribute (it will be surrounded by {3}, which need removed). The class library also provides
custom attributes for exposing the CapeDescription registry keys, as shown below. Once
completed, the class will look like this:

[Serializable]
[CapeOpen.CapeDescriptionAttribute("'Mixer example class written in C#.")]
[CapeOpen.CapeVersionAttribute("1.0")]
[CapeOpen.CapeVendorURLAttribute(""http:\\www.epa.gov')]
[CapeOpen.CapeHelpURLAttribute(""http:\\www.epa.gov')]
[CapeOpen.CapeAboutAttribute(*'US Environmental Protection Agency\nCincinnati,
Ohio™)]
[System.Runtime. InteropServices.ComVisible(true)]
[System.Runtime. InteropServices.Guid('8F39966B-6F94-4657-A67D-DAD971C898B4'*)]
public class Classl: CapeOpen.CUnitBase
{
}
}

And building the class should provide the following error:

C:\MixerExample\MixerExample\MixerExample\Class1l.cs(8,18): error CS0534: “MixerExample.Classl-
does not implement inherited abstract member "CapeOpen.CUnitBase.Calculate()"
c:\Program Files\USEPA\CapeOpen\CapeOpen.dll: (Related file)

Step 4: Implement the unit operation constructor and/or initialize method. The parameter and
port collections are created in the CapeOpen.CUnitBase class constructor, which is called prior
to the derived class’s constructor during object creation. However, the CAPE-OPEN
specification states that ports and parameters collections be created in the
ICapeUitilities.Initialize() method and requires that the process modeling environment calls the
unit operation’s ICapeUltilities.Initialize() method prior to using the PMC. The initialize method
is implemented as a virtual function that does nothing in the CapeOpen.CUnitBase class. You
may choose to add ports and parameters in either the Class constructor or the
ICapeUitilities.Initialize() method. Below shows adding the Initialize() method to the unit
operation. The code will look like this:

[Serializable]
[Serializable]
[CapeOpen.CapeNameAttribute("’'MixerExample™)]
[CapeOpen.CapeDescriptionAttribute("'Mixer example class written in C#."")]
[CapeOpen.CapeVersionAttribute("1.0")]
[CapeOpen.CapeVendorURLAttribute(""http:\\www.epa.gov')]
[CapeOpen.CapeHelpURLAttribute(""http:\\www.epa.gov')]
[CapeOpen.CapeAboutAttribute(*'US Environmental Protection
Agency\nCincinnati, Ohio')]
[System._Runtime. InteropServices.ComVisible(true)]
[System.Runtime. InteropServices.Guid(*'8F39966B-6F94-4657-A67D-
DAD971C898B4'*)]
public class Classl: CapeOpen.CUnitBase

{
public Class1()
this.ComponentName = "MixerExample';
this.ComponentDescription = "Mixer easmple class written in C#";

}
public override void InitializeQ)

this.Ports._Add(new CapeOpen.CUnitPort("Inlet Portl",
"Test Inlet Portl™, CapeOpen.CapePortDirection.CAPE_INLET,
CapeOpen.CapePortType.CAPE_MATERIAL));
this.Ports->Add(new CapeOpen.CUnitPort("Inlet Port2",
"Test Inlet Port2", CapeOpen.CapePortDirection.CAPE_INLET,
CapeOpen.CapePortType.CAPE_MATERIAL));
this.Ports->Add(new CapeOpen.CUnitPort(*"Outlet Port™,
"Test Outlet Port", CapeOpen.CapePortDirection.CAPE_OUTLET,
CapeOpen.CapePortType.CAPE_MATERIAL));
this.Parameters->Add(new CapeOpen.CRealParameter(*'PressureDrop",
"Drop in pressure between the outlet from the mixer and the
pressure of the lower pressure inlet.", 0.0, 0.0, 0.0,
100000000.0, CapeOpen.CapeParamModeCAPE_INPUT, *Pa'));
this.Parameters->Add(new CapeOpen.ClntParameter(''Parameter2",
12, CapeOpen.CapeParamMode.CAPE_INPUT_OUTPUT));
this.Parameters->Add(new CapeOpen.CBoolParameter(*'Parameter3",
false, CapeOpen.CapeParamMode.CAPE_INPUT_OUTPUT));
String[] options = { "Test Value', "Another Value" };
this.Parameters->Add(new CapeOpen.COptionParameter("'Parameter4™,

“"OptionParameter', "Test Value', "Test Value'™, options, true,
CapeOpen.CapeParamMode .CAPE_INPUT_OUTPUT));
this.AvailableReports->Add(*'Report 2');

}
}

The constructor sets the unit operation’s ICapeldentification.ComponentName and
ICapeldenfication.ComponentDescription properties. The Initialize() method overrides the base
class method and adds ports and parameters to their respective collections.

Creating Ports: Ports are implemented by the CUnitPort class. This class implements the
ICapeUnitPort and ICapeldentification interfaces. This class has a single contructor, which takes
the following parameters:

String ComponentName (sets the ICapeldentification.ComponentName property)

String ComponentDescription (sets the 1Capeldentification.ComponentDescription property)
CapePortDirection direction (sets the Port Direction property)

CapePortType type (sets the port type property)

Once you have created the port, it can be added to the port collection using the Add() method of
the PortCollection class.

Creating Parameters: There are four (4) types of parameters available, CRealParameter,
CiIntParameter, CBoolParameter, and COptionParameter. Each of these implement the
ICapeldentification, ICapeParameter, and ICapeParameterSpec interfaces, and the appropriate
specification interfaces. The constructors are overloaded (multiple versions) and descriptions of
each constructor is provided in the above described documentation file.

Once you have created the parameter, it can be added to the port collection using the Add()
method of the ParameterCollection class.

Step 5: Implement the unit operation’s “Calculate” method. See the attached “MixerExample.cs”
file for the implementation of a mixer. This example obtains the component flows, pressures, and
enthalpies of the input streams using both the CapeOpen.ICapeThermoMaterialObect interface
and the MaterialObjectWrapper class. The MaterialObjectWrapper class wraps a material object
and converts the variants (objects) to type proper array type for convenience. The example
provided uses the MessageBox.Show method to provide feedback if an exception is encountered,
and requires a reference to the “System.Windows.Forms” assembly be added to your

Step 6: Set the IDE to register the build output. This is done by opening the project properties
page, selecting the “Build” tab and selecting the “Register for COM interop” checkbox. At this
point, the mixer unit operation is available for use in your process simulation application, such as
COFE. It should be noted that by checking the “Register for COM interop” box, the component
is only registered locally. If you would like to distribute the component to other machines, it will
need to be registered with regasm.exe or by creating an installation package.

Open COFE, and select the add unit operation button, and you will see your
MixerExample.Classl in the “Select Unit Operation” dialog, as shown below.

E- Select Unit Operation:

bl imer
bl i

erE wample.C

Capetfersion = 1.0

* Componentyerzion =1.0.0.0

* Deszcription =

* WendorldRL = httpd Aese co-lan.org

EI.

e CLSID = {FCABC30N-8135-4315-9182-
El-ﬂ: Mol peration

£ i | E

Abot |] I Cancel

Select OK, and add the unit operation to the flowsheet:

® COFE - Flowsheel1
Blo Edt Insert Fipwhoct Plot Vew Window Helo

DFdg @ I P v rand el

Then select a property package and attach materials to the ports.

% COFE - Flowsheet1 M =E3

File Edit Insert Flowshest Plob View Window Help

DS H& @ i 2| defa r oo aE

M=

. Flowsheet1

| |Inlet Port2

Cancel |

I T

inserted skream 1

Configure the inlet material streams and solve the flow sheet. On starting the unit operation’s
Calculate() method, the ICapeDiagnostic.LogMessage and ICapeDiagnostic.PopUpMessage
methods are called, as can be seen below:

i 4 COFE - [Flowsheet1]
BF\I& Edit Insert Flowshest Flob Miew ‘Window Help

DS @B o @ P | ra e

Message:

Solve: MixerExample.Class1_1

Ad the unit will calculate:

® COFE - [Flowsheet1] =13
E.Eile Edit Insert Flowshest Plot Yiew Window Help |

DSE&E =@ 0y & v ranfa=

v/

Salve Finishad | TUM o |

DEBUGGING

There are two ways to access the debugger. First, you could select your desired simulation
application as the external program to start on the Debugger property page, as shown:

e G poe Bokd DA (sbg Dgte Db s Commndy
IJ-J-.-;H; Aas -t Bl v = dew oy 2| Bt o Y

Thbn D s v B K| et ki Seriaahet | R b - [P yE
ab | deokanen [l o
L [pe—— W P At oy C0) - ER LT,
™
St e
Pk Lot %
© St proma 4
e B ik et ¥ovtrom ST Laws =
T 3 St e et B
somrn St cpturs
Batenaece st [EENS -
P ebeny vy [J

[v ot et

Endis Dsbugers
) bratin o o cotngang
[0 Erati 5, Sarver dnbusparg

CRE

e b i (7358 omre | 3 ot (bt oo

| st
And the selected application will start as a host when you select the “Debug->Start Debugging”
menu item.

Alternatively, your can attach to a running process by selecting the “Debug->Attach to process”
menu item, which brings up this dialog box shown below:

Attach to Process

Transpork: IDeFault = |

Qualifier: | DZ6Z6CWEARRETTL v || Erowse.. |

Transport Information

The defaulk kransport lets wou select processes on this computer or a remote computer running the Microsoft Wisual Studio Femote
Debugging Monitor {MSYSMON EXE).

Aktach ko I Automatic; Managed code | Select. ..

Available Processes

Process D Title Tvpe User Mame Session | |

CCApp.Exe 2204 pitals} DZezeCWEARRE.,.,. O

_OFE.exe 4056 COFE - [Flowsheet1 Managed, ... D WARRE.., O

ctfron. exe 2364 86 D2e26CWEBARRE.., O

deveny.exe 2744 CapeCpen - Microsaft Visual Studio Managed, ... D2626CWBARRE.., 0O

Directod. exe 1620 %B6 Deeze’WEBARRE.., O

explorer.exe Z200 i\ CapeCpentCapedpen i) Dzez6CWEBARRE... 0

ninotes.exe 3452 Williarnm Barrett - Inbox - Lokus Nokes %36 DZezZaCWEARRE... 0O

ntaskldr. exe 2640 %86 DZeZ6CWEBARRE.., 0O

pddm.exe 7re *86 Dzg2eCWEBARRE.., 0O |

POAWERPMNT.EZE 2624 Microsoft PowerPoint - [Presentationi] Fiala] D2e26CWEBARRE.., 0O

PushOkRWMon.exe 1120 Fitalal DzezeCWEARRE... 0O

rundll3z, exe 2932 Fitals} DzezeCWEARRE.., O -
[]show processes From all users []5how processes in all sessions

Attach] [Cancel l

Select the desired application and click the “Attach” button.

The class library will then stop at all breakpoints hit during execution, as shown below:

0 MixerExample (Debugsine) - Microsoft Visual Studio

Eie Edk View Project Buld Debug Data Tools Mindow Community Help

! R = - NI W=, " A-=] p B ~ S s e E w2 Edit Documentation _
(bl m @ | 2 S2(E 2 e [0 o i B = 1.0 SO
Solution Explorer - Mi... = X Assemblylnfo.cs & Cl 8| MixerExample v X
= > T EL& | g MixerExample. Class1 v | [“ocCakculately v
[Solution MixsrExample' (Lpre | |- 3 = |
= (] MixerExample ~
- |5 Properties public override void Calculate ()
-] Assemblylnfo.cs p
B [References e o
b {this.SimulationContext as CapsOpen.ICap=Diagnostic] .Loglessage ["Starcing Mixer Caloulation”);
3 system (this.SimulationContext &3 CapeOpen.ICapsDiagnostic) .PopUpNessage ("Starting Mixer Calculation™))
i siatom i CapeOpen. ICapeThermofaterialthject inl = (this.Ports[0].connectedObject as CapeOpen.ICapeThermoMaterialchisct);
3 System Windaws, String[] phases = { "Overall” };
. 3 System sl String[] props = { "enthalpy” };
& Classt.cs grring(] inlComps:
double[] iniFlow;
double[] inlEnthalpy;
double[] pressure;
double totalFlowl = O:
try
{
iniComps = (inl.ComponentIds as String(l);
iniFlow = (inl.GetProp("flow”, "Overall”, null, null, "mole”) as double(]):
pressure = (inl.GetProp("Pressure”, "Overall”, null, null, null] as double[]):
for (int i = O; i < inlFlow.Length; i++)
< | = [2
e Salution Expl... [F lass View | & — o e | B
o i tad | Pending Checking >3 X
Name: Velus Type Al | o 2 Comments | B - 14117y =
B @ this {MixsrExample, Class1} VixerExal
- u Name Change type
@i [it
® @ int {System. _ ComObject} Capetpe
= @ phases {Dimensions:[1]F string[]
@ [0 "Overal” 3 - string
B @ props {Dimensions:[11 strinal]
"enthalpy” 1 ~ string
w [0 "Ethane’ 4 ~ string
@1 "Propans” %~ string
92 "N-butane” L ~ string
@[3 "N-pentane" 3 v string
= @ intFlow {Dimensions:[4]- doublef]
v [125.0 double
Fae| 125.0 docble
w2 125.0 double
@[3 125.0 dotble
@ inlEnthalpy null double[]
& @ pressure {Dimensions:[1]- double(]
@ totalFlowl 0.0 double
@ inz ol Capeope
@ in2Comps null string(]
@ in2Flow il double(]
& inzEnthaloy nl double] ¥ € = I L
.;jAutus=;§|Ln(a\s 13} Threads |] Modules | Eglvatch 1 (Call Stack | g Breakpoints | (5] Output | [} Pending Checkins
=

Unit Operations Manager

This is an analogous system to the ThermoSystem provided in the Thermodynamics package. It
is intended to allow developers to create unit operations classes that can be developed, tested and
installed on client machines without the need for administrative credentials, required for COM-
based development.

On installation of this package, a directory will be installed in the %program files% (typically,
the “C:\Program Files” directory) named “CapeOpen Objects” (see below).

|] C:\Program Files\Common Files\CapeOpen Objects
File Edt Wiew Favorites Tooks Help
~ - % a, =
Qo - @ T | Psean |[roes | 3 1 F X E
Address | C:\Pragram Files\Commen Files|CapeOpen Objects v e
Folders X hame Size | Type Date Modified
® [Cisco Systems A Drestt File Folder 422/2006 3:29 PM
(DTest2 File Folder 422/2006 3:23 PM
= () Common Files
) Adaptec Shared
=
)
=
@) Inskalshisld v
< | >
2 objects (Disk free space: 100 GB) Obytes ' My Computer

The unit operation manager will inspect “CapeOpen Objects” directory and all subdirectories for
assemblies that contain Cape-Open unit operations built from this assembly. Further, if you are
debugging a test unit, the unit operation manager will detect the debugger and locate any unit
operations within the assembly being debugged.

To use the unit operation manager, install this package into the target computer. If you develop a
unit operation as shown above, when you debug it, select the UnitOperationManager from the
flowsheeting environment (as shown below):

| E- Select Unit Operation: |:|@
M

+ C_Sharpbdizer11.Clazz1
Capelpen. Jnitd perationtd anager

* CapeVerzion=1.0
- Componentyersion = 1.0, 305624537
* Deszcription =
* WendorldRL = httpd Aese co-lan.org
+ CLSID = {48CE7I5C-AG7D-4307 5581

1+ 48k CapeOpenExample.ExchangerExample ¥

5 L4

Abot ‘] | Cancel

Click OK, and the unit operation selector will be shown:

UnitSelector EE”E|

- Drefault Unit
= Debugged Uit
+- Capelpen. CMizerE sample

-hangerE xample

- Descriphion:
o CapeVersion:
- ComponentyYersion: 1.0.0.0
- MendorURL:
- HelplURAL:
o pbout:

Capelpen Units

About... Cancel | Ok |
A

You can then select the desired unit and it will be created and inserted into the flowshhet for your
use.

Update History

Version 1.1.2

Added UnitOperationManager class to allow users to access .Net-based units without
requiring the units to be registered with COM.

Update the help file to be more complete, currently distributed as a compiled help file
installed in the application directory..

e Added the Petroleum Fractions interfaces.

	Untitled

